Abstract: Recently, topological graphs based on structural or functional connectivity of brain network have been utilized to construct graph neural networks (GNN) for Electroencephalogram (EEG) ...
The recent past has seen an increasing interest in Heterogeneous Graph Neural Networks (HGNNs), since many real-world graphs are heterogeneous in nature, from citation graphs to email graphs. However, ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
With the recent popularity of neural networks comes the need for efficient serving of inference workloads. A neural network inference workload can be represented as a computational graph with nodes as ...
BingoCGN employs cross-partition message quantization to summarize inter-partition message flow, which eliminates the need for irregular off-chip memory access and utilizes a fine-grained structured ...
ABSTRACT: Knowledge Graph (KG) and neural network (NN) based Question-answering (QA) systems have evolved into the realm of intelligent information retrieval as they have been able to reach a high ...
A Spatio-Temporal Tensor Graph Neural Network-Based Method for Node-Link Prediction in Port Networks
Abstract: Port network information security has received extensive attention in recent years, in which the prediction of node links in the network is significant. A Port network is a dynamic network, ...
Positive predictive value was higher with MELD Graph compared with existing baseline algorithm. HealthDay News — A graph neural network using data from the Multicenter Epilepsy Lesion Detection (MELD) ...
The demand for immersive, realistic graphics in mobile gaming and AR or VR is pushing the limits of mobile hardware. Achieving lifelike simulations of fluids, cloth, and other materials historically ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results